관리-도구
편집 파일: newint.py
""" Backport of Python 3's int, based on Py2's long. They are very similar. The most notable difference is: - representation: trailing L in Python 2 removed in Python 3 """ from __future__ import division import struct import collections from future.types.newbytes import newbytes from future.types.newobject import newobject from future.utils import PY3, isint, istext, isbytes, with_metaclass, native if PY3: long = int class BaseNewInt(type): def __instancecheck__(cls, instance): if cls == newint: # Special case for Py2 short or long int return isinstance(instance, (int, long)) else: return issubclass(instance.__class__, cls) class newint(with_metaclass(BaseNewInt, long)): """ A backport of the Python 3 int object to Py2 """ def __new__(cls, x=0, base=10): """ From the Py3 int docstring: | int(x=0) -> integer | int(x, base=10) -> integer | | Convert a number or string to an integer, or return 0 if no | arguments are given. If x is a number, return x.__int__(). For | floating point numbers, this truncates towards zero. | | If x is not a number or if base is given, then x must be a string, | bytes, or bytearray instance representing an integer literal in the | given base. The literal can be preceded by '+' or '-' and be | surrounded by whitespace. The base defaults to 10. Valid bases are | 0 and 2-36. Base 0 means to interpret the base from the string as an | integer literal. | >>> int('0b100', base=0) | 4 """ try: val = x.__int__() except AttributeError: val = x else: if not isint(val): raise TypeError('__int__ returned non-int ({0})'.format( type(val))) if base != 10: # Explicit base if not (istext(val) or isbytes(val) or isinstance(val, bytearray)): raise TypeError( "int() can't convert non-string with explicit base") try: return super(newint, cls).__new__(cls, val, base) except TypeError: return super(newint, cls).__new__(cls, newbytes(val), base) # After here, base is 10 try: return super(newint, cls).__new__(cls, val) except TypeError: # Py2 long doesn't handle bytearray input with an explicit base, so # handle this here. # Py3: int(bytearray(b'10'), 2) == 2 # Py2: int(bytearray(b'10'), 2) == 2 raises TypeError # Py2: long(bytearray(b'10'), 2) == 2 raises TypeError try: return super(newint, cls).__new__(cls, newbytes(val)) except: raise TypeError("newint argument must be a string or a number," "not '{0}'".format(type(val))) def __repr__(self): """ Without the L suffix """ value = super(newint, self).__repr__() assert value[-1] == 'L' return value[:-1] def __add__(self, other): value = super(newint, self).__add__(other) if value is NotImplemented: return long(self) + other return newint(value) def __radd__(self, other): value = super(newint, self).__radd__(other) if value is NotImplemented: return other + long(self) return newint(value) def __sub__(self, other): value = super(newint, self).__sub__(other) if value is NotImplemented: return long(self) - other return newint(value) def __rsub__(self, other): value = super(newint, self).__rsub__(other) if value is NotImplemented: return other - long(self) return newint(value) def __mul__(self, other): value = super(newint, self).__mul__(other) if isint(value): return newint(value) elif value is NotImplemented: return long(self) * other return value def __rmul__(self, other): value = super(newint, self).__rmul__(other) if isint(value): return newint(value) elif value is NotImplemented: return other * long(self) return value def __div__(self, other): # We override this rather than e.g. relying on object.__div__ or # long.__div__ because we want to wrap the value in a newint() # call if other is another int value = long(self) / other if isinstance(other, (int, long)): return newint(value) else: return value def __rdiv__(self, other): value = other / long(self) if isinstance(other, (int, long)): return newint(value) else: return value def __idiv__(self, other): # long has no __idiv__ method. Use __itruediv__ and cast back to # newint: value = self.__itruediv__(other) if isinstance(other, (int, long)): return newint(value) else: return value def __truediv__(self, other): value = super(newint, self).__truediv__(other) if value is NotImplemented: value = long(self) / other return value def __rtruediv__(self, other): return super(newint, self).__rtruediv__(other) def __itruediv__(self, other): # long has no __itruediv__ method mylong = long(self) mylong /= other return mylong def __floordiv__(self, other): return newint(super(newint, self).__floordiv__(other)) def __rfloordiv__(self, other): return newint(super(newint, self).__rfloordiv__(other)) def __ifloordiv__(self, other): # long has no __ifloordiv__ method mylong = long(self) mylong //= other return newint(mylong) def __mod__(self, other): value = super(newint, self).__mod__(other) if value is NotImplemented: return long(self) % other return newint(value) def __rmod__(self, other): value = super(newint, self).__rmod__(other) if value is NotImplemented: return other % long(self) return newint(value) def __divmod__(self, other): value = super(newint, self).__divmod__(other) if value is NotImplemented: mylong = long(self) return (mylong // other, mylong % other) return (newint(value[0]), newint(value[1])) def __rdivmod__(self, other): value = super(newint, self).__rdivmod__(other) if value is NotImplemented: mylong = long(self) return (other // mylong, other % mylong) return (newint(value[0]), newint(value[1])) def __pow__(self, other): value = super(newint, self).__pow__(other) if value is NotImplemented: return long(self) ** other return newint(value) def __rpow__(self, other): value = super(newint, self).__rpow__(other) if value is NotImplemented: return other ** long(self) return newint(value) def __lshift__(self, other): if not isint(other): raise TypeError( "unsupported operand type(s) for <<: '%s' and '%s'" % (type(self).__name__, type(other).__name__)) return newint(super(newint, self).__lshift__(other)) def __rshift__(self, other): if not isint(other): raise TypeError( "unsupported operand type(s) for >>: '%s' and '%s'" % (type(self).__name__, type(other).__name__)) return newint(super(newint, self).__rshift__(other)) def __and__(self, other): if not isint(other): raise TypeError( "unsupported operand type(s) for &: '%s' and '%s'" % (type(self).__name__, type(other).__name__)) return newint(super(newint, self).__and__(other)) def __or__(self, other): if not isint(other): raise TypeError( "unsupported operand type(s) for |: '%s' and '%s'" % (type(self).__name__, type(other).__name__)) return newint(super(newint, self).__or__(other)) def __xor__(self, other): if not isint(other): raise TypeError( "unsupported operand type(s) for ^: '%s' and '%s'" % (type(self).__name__, type(other).__name__)) return newint(super(newint, self).__xor__(other)) def __neg__(self): return newint(super(newint, self).__neg__()) def __pos__(self): return newint(super(newint, self).__pos__()) def __abs__(self): return newint(super(newint, self).__abs__()) def __invert__(self): return newint(super(newint, self).__invert__()) def __int__(self): return self def __nonzero__(self): return self.__bool__() def __bool__(self): """ So subclasses can override this, Py3-style """ return super(newint, self).__nonzero__() def __native__(self): return long(self) def to_bytes(self, length, byteorder='big', signed=False): """ Return an array of bytes representing an integer. The integer is represented using length bytes. An OverflowError is raised if the integer is not representable with the given number of bytes. The byteorder argument determines the byte order used to represent the integer. If byteorder is 'big', the most significant byte is at the beginning of the byte array. If byteorder is 'little', the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder' as the byte order value. The signed keyword-only argument determines whether two's complement is used to represent the integer. If signed is False and a negative integer is given, an OverflowError is raised. """ if length < 0: raise ValueError("length argument must be non-negative") if length == 0 and self == 0: return newbytes() if signed and self < 0: bits = length * 8 num = (2**bits) + self if num <= 0: raise OverflowError("int too smal to convert") else: if self < 0: raise OverflowError("can't convert negative int to unsigned") num = self if byteorder not in ('little', 'big'): raise ValueError("byteorder must be either 'little' or 'big'") h = b'%x' % num s = newbytes((b'0'*(len(h) % 2) + h).zfill(length*2).decode('hex')) if signed: high_set = s[0] & 0x80 if self > 0 and high_set: raise OverflowError("int too big to convert") if self < 0 and not high_set: raise OverflowError("int too small to convert") if len(s) > length: raise OverflowError("int too big to convert") return s if byteorder == 'big' else s[::-1] @classmethod def from_bytes(cls, mybytes, byteorder='big', signed=False): """ Return the integer represented by the given array of bytes. The mybytes argument must either support the buffer protocol or be an iterable object producing bytes. Bytes and bytearray are examples of built-in objects that support the buffer protocol. The byteorder argument determines the byte order used to represent the integer. If byteorder is 'big', the most significant byte is at the beginning of the byte array. If byteorder is 'little', the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder' as the byte order value. The signed keyword-only argument indicates whether two's complement is used to represent the integer. """ if byteorder not in ('little', 'big'): raise ValueError("byteorder must be either 'little' or 'big'") if isinstance(mybytes, unicode): raise TypeError("cannot convert unicode objects to bytes") # mybytes can also be passed as a sequence of integers on Py3. # Test for this: elif isinstance(mybytes, collections.Iterable): mybytes = newbytes(mybytes) b = mybytes if byteorder == 'big' else mybytes[::-1] if len(b) == 0: b = b'\x00' # The encode() method has been disabled by newbytes, but Py2's # str has it: num = int(native(b).encode('hex'), 16) if signed and (b[0] & 0x80): num = num - (2 ** (len(b)*8)) return cls(num) # def _twos_comp(val, bits): # """compute the 2's compliment of int value val""" # if( (val&(1<<(bits-1))) != 0 ): # val = val - (1<<bits) # return val __all__ = ['newint']