관리-도구
편집 파일: port.h
/* Copyright 2013 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* Macros for endianness, branch prediction and unaligned loads and stores. */ #ifndef BROTLI_ENC_PORT_H_ #define BROTLI_ENC_PORT_H_ #include <assert.h> #include <string.h> /* memcpy */ #include <brotli/port.h> #include <brotli/types.h> #if defined OS_LINUX || defined OS_CYGWIN #include <endian.h> #elif defined OS_FREEBSD #include <machine/endian.h> #elif defined OS_MACOSX #include <machine/endian.h> /* Let's try and follow the Linux convention */ #define __BYTE_ORDER BYTE_ORDER #define __LITTLE_ENDIAN LITTLE_ENDIAN #endif /* define the macro BROTLI_LITTLE_ENDIAN using the above endian definitions from endian.h if endian.h was included */ #ifdef __BYTE_ORDER #if __BYTE_ORDER == __LITTLE_ENDIAN #define BROTLI_LITTLE_ENDIAN #endif #else #if defined(__LITTLE_ENDIAN__) #define BROTLI_LITTLE_ENDIAN #endif #endif /* __BYTE_ORDER */ #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) #define BROTLI_LITTLE_ENDIAN #endif /* Enable little-endian optimization for x64 architecture on Windows. */ #if (defined(_WIN32) || defined(_WIN64)) && defined(_M_X64) #define BROTLI_LITTLE_ENDIAN #endif /* Portable handling of unaligned loads, stores, and copies. On some platforms, like ARM, the copy functions can be more efficient then a load and a store. */ #if defined(BROTLI_LITTLE_ENDIAN) && (\ defined(ARCH_PIII) || defined(ARCH_ATHLON) || \ defined(ARCH_K8) || defined(_ARCH_PPC)) /* x86 and x86-64 can perform unaligned loads/stores directly; modern PowerPC hardware can also do unaligned integer loads and stores; but note: the FPU still sends unaligned loads and stores to a trap handler! */ #define BROTLI_UNALIGNED_LOAD32(_p) (*(const uint32_t *)(_p)) #define BROTLI_UNALIGNED_LOAD64LE(_p) (*(const uint64_t *)(_p)) #define BROTLI_UNALIGNED_STORE64LE(_p, _val) \ (*(uint64_t *)(_p) = (_val)) #elif defined(BROTLI_LITTLE_ENDIAN) && defined(__arm__) && \ !defined(__ARM_ARCH_5__) && \ !defined(__ARM_ARCH_5T__) && \ !defined(__ARM_ARCH_5TE__) && \ !defined(__ARM_ARCH_5TEJ__) && \ !defined(__ARM_ARCH_6__) && \ !defined(__ARM_ARCH_6J__) && \ !defined(__ARM_ARCH_6K__) && \ !defined(__ARM_ARCH_6Z__) && \ !defined(__ARM_ARCH_6ZK__) && \ !defined(__ARM_ARCH_6T2__) /* ARMv7 and newer support native unaligned accesses, but only of 16-bit and 32-bit values (not 64-bit); older versions either raise a fatal signal, do an unaligned read and rotate the words around a bit, or do the reads very slowly (trip through kernel mode). */ #define BROTLI_UNALIGNED_LOAD32(_p) (*(const uint32_t *)(_p)) static BROTLI_INLINE uint64_t BROTLI_UNALIGNED_LOAD64LE(const void *p) { uint64_t t; memcpy(&t, p, sizeof t); return t; } static BROTLI_INLINE void BROTLI_UNALIGNED_STORE64LE(void *p, uint64_t v) { memcpy(p, &v, sizeof v); } #else /* These functions are provided for architectures that don't support */ /* unaligned loads and stores. */ static BROTLI_INLINE uint32_t BROTLI_UNALIGNED_LOAD32(const void *p) { uint32_t t; memcpy(&t, p, sizeof t); return t; } #if defined(BROTLI_LITTLE_ENDIAN) static BROTLI_INLINE uint64_t BROTLI_UNALIGNED_LOAD64LE(const void *p) { uint64_t t; memcpy(&t, p, sizeof t); return t; } static BROTLI_INLINE void BROTLI_UNALIGNED_STORE64LE(void *p, uint64_t v) { memcpy(p, &v, sizeof v); } #else /* BROTLI_LITTLE_ENDIAN */ static BROTLI_INLINE uint64_t BROTLI_UNALIGNED_LOAD64LE(const void *p) { const uint8_t* in = (const uint8_t*)p; uint64_t value = (uint64_t)(in[0]); value |= (uint64_t)(in[1]) << 8; value |= (uint64_t)(in[2]) << 16; value |= (uint64_t)(in[3]) << 24; value |= (uint64_t)(in[4]) << 32; value |= (uint64_t)(in[5]) << 40; value |= (uint64_t)(in[6]) << 48; value |= (uint64_t)(in[7]) << 56; return value; } static BROTLI_INLINE void BROTLI_UNALIGNED_STORE64LE(void *p, uint64_t v) { uint8_t* out = (uint8_t*)p; out[0] = (uint8_t)v; out[1] = (uint8_t)(v >> 8); out[2] = (uint8_t)(v >> 16); out[3] = (uint8_t)(v >> 24); out[4] = (uint8_t)(v >> 32); out[5] = (uint8_t)(v >> 40); out[6] = (uint8_t)(v >> 48); out[7] = (uint8_t)(v >> 56); } #endif /* BROTLI_LITTLE_ENDIAN */ #endif #define TEMPLATE_(T) \ static BROTLI_INLINE T brotli_min_ ## T (T a, T b) { return a < b ? a : b; } \ static BROTLI_INLINE T brotli_max_ ## T (T a, T b) { return a > b ? a : b; } TEMPLATE_(double) TEMPLATE_(float) TEMPLATE_(int) TEMPLATE_(size_t) TEMPLATE_(uint32_t) TEMPLATE_(uint8_t) #undef TEMPLATE_ #define BROTLI_MIN(T, A, B) (brotli_min_ ## T((A), (B))) #define BROTLI_MAX(T, A, B) (brotli_max_ ## T((A), (B))) #define BROTLI_SWAP(T, A, I, J) { \ T __brotli_swap_tmp = (A)[(I)]; \ (A)[(I)] = (A)[(J)]; \ (A)[(J)] = __brotli_swap_tmp; \ } #define BROTLI_ENSURE_CAPACITY(M, T, A, C, R) { \ if (C < (R)) { \ size_t _new_size = (C == 0) ? (R) : C; \ T* new_array; \ while (_new_size < (R)) _new_size *= 2; \ new_array = BROTLI_ALLOC((M), T, _new_size); \ if (!BROTLI_IS_OOM(m) && C != 0) \ memcpy(new_array, A, C * sizeof(T)); \ BROTLI_FREE((M), A); \ A = new_array; \ C = _new_size; \ } \ } #endif /* BROTLI_ENC_PORT_H_ */